M1.(a) M1 (could be scored by a correct mathematical expression)
M1 $\Delta H=\Sigma \Delta H_{f}$ (products) $-\Sigma \Delta H_{f}$ (reactants)
OR a correct cycle of balanced equations
M2 $=5(-635)-(-1560)$
$=-3175+1560$
(This also scores M1)
M3 $\quad=\mathbf{- 1 6 1 5}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
Award 1 mark ONLY for (+) 1615
Correct answer to the calculation gains all of M1, M2 and M3 Credit 1 mark for ${ }^{+}$) 1615 ($\mathrm{kJ} \mathrm{mol}^{-1}$)
For other incorrect or incomplete answers, proceed as follows

- check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (M1 and M2)
- If no $A E$, check for a correct method; this requires either a correct cycle with $\mathrm{V}_{2} \mathrm{O}_{5}$ and 5 CaO OR a clear statement of M1 which could be in words and scores only M1

M4 Type of reaction is

- reduction
- redox
- (or accept) $\underline{\mathrm{V}}_{2} \underline{\mathrm{O}}_{5} /$ it $/ \mathrm{V}(\mathrm{V})$ has been reduced In M4 not "vanadium / V is reduced"

M5 Major reason for expense of extraction - the answer must be about calcium

Calcium is produced / extracted by electrolysis
OR calcium is expensive to extract
$O R$ calcium extraction uses electricity
OR calcium extraction uses large amount of energy
$O R$ calcium is a (very) reactive metal / reacts with water or air
OR calcium needs to be extracted / does not occur native QoL
Accept calcium is expensive "to produce" but not "to source, to get, to obtain, to buy" etc.
In M5 it is neither enough to say that calcium is "expensive" nor that calcium "must be purified"
(b) M1
$2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \longrightarrow 2 \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3}$
Page 2

Ignore state symbols
Credit multiples of the equation

M2

(Change in oxidation state) $\mathbf{0}$ to (+)3
OR
(changed by) $\underline{\mathbf{3}}$
In M2 if an explanation is given it must be correct and unambiguous
(c) M1
$\mathrm{VCl}_{2}+\mathrm{H}_{2} \longrightarrow \mathrm{~V}+2 \mathrm{HCl}$
In M1 credit multiples of the equation

M2 and M3

Two hazards in either order

- $\quad \mathrm{HCl}$ / hydrogen chloride / hydrochloric acid is acidic / corrosive / toxic / poisonous
- Explosion risk with hydrogen (gas) $\mathrm{OR}_{\mathrm{H}_{2}}$ is flammable For M2 / M3 there must be reference to hydrogen; it is not enough to refer simply to an explosion risk
For M2 / M3 with HCl hazard, require reference to acid(ic) / corrosive / toxic only

M4

The only other product / the HCl is easily / readily removed / lost / separated because it is a gas $O R$ will escape (or this idea strongly implied) as a gas $O R$ vanadium / it is the only solid product (and is easily separated) $O R$ vanadium / it is a solid and the other product / HCl is a gas

In M4 it is not enough to state simply that HCl is a gas, since this is in the question.
(b) Around carbon there are 4 bonding pairs of electrons (and no lone pairs)
(c) $\Delta H=\Sigma \Delta_{i} H$ products $-\Sigma \Delta_{i} H$ reactants or a correct cycle

$$
\text { Hence }=(2 \times-680)+(6 \times-269)-(x)=-2889
$$

$$
x=2889-1360-1614=-85\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)
$$

Score 1 mark only for $+85\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(d) Bonds broken $=4(\mathrm{C}-\mathrm{H})+4(\mathrm{~F}-\mathrm{F})=4 \times 412+4 \times \mathrm{F}-\mathrm{F}$ Bonds formed $=4(\mathrm{C}-\mathrm{F})+4(\mathrm{H}-\mathrm{F})=4 \times 484+4 \times 562$

Both required
$-1904=[4 \times 412+4(\mathrm{~F}-\mathrm{F})]-[4 \times 484+4 \times 562]$
$4(F-F)=-1904-4 \times 412+[4 \times 484+4 \times 562]=632$
$\mathrm{F}-\mathrm{F}=632 / 4=158\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$

The student is correct because the F-F bond energy is much less than the C-H or other covalent bonds, therefore the F-F bond is weak / easily broken

Relevant comment comparing to other bonds (Low activation energy needed to break the F-F bond)

Or multiples.
Ignore state symbols.
(ii) $\mathrm{Fe} \longrightarrow \mathrm{Fe}^{2+}+2 \mathrm{e}^{-}$

Ignore charge on the electron unless incorrect.
Or multiples.
Credit the electrons being subtracted on the LHS.
Ignore state symbols.
(b) (i) $\mathrm{Sb}_{2} \mathrm{~S}_{3}+4.5 \mathrm{O}_{2} \longrightarrow \mathrm{Sb}_{2} \mathrm{O}_{3}+3 \mathrm{SO}_{2}$

Or multiples.
Ignore state symbols.
(ii) SO_{3} or sulfur trioxide / sulfur (VI) oxide

Credit also the following ONLY.
$\mathrm{H}_{2} \mathrm{SO}_{4}$ or sulfuric acid.
OR
Gypsum / CaSO_{4} or plaster of Paris.
(c) (i) M1 (could be scored by a correct mathematical expression)

Correct answer gains full marks.
M1 $\Delta H_{\mathrm{r}}=\Sigma \Delta H_{f}$ (products) $-\Sigma \Delta H_{f}$ (reactants)
OR a correct cycle of balanced equations / correct numbers of moles
Credit 1 mark for $+104\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$.
M2 $=2(+20)+3(-394)-(-705)-3(-111)$
$=40-1182+705+333$
$=-1142-(-1038)$
(This also scores M1)
M3 $=-104\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(Award 1 mark ONLY for + 104)
For other incorrect or incomplete answers, proceed as follows:

- Check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks.
- If no AE, check for a correct method; this requires either a correct cycle with $3 \mathrm{CO}, 2 \mathrm{Sb}$ and $3 \mathrm{CO}_{2} \mathrm{OR}$ a clear statement of M1 which could be in words and scores only M1.
(ii) It / Sb is not in its standard state

OR
Standard state (for Sb) is solid / (s)

OR

(Sb) liquid is not its standard state
Credit a correct definition of standard state as an alternative to the words 'standard state'.
QoL
(iii) Reduction OR reduced OR redox
(d) Low-grade ore extraction / it

- uses (cheap) scrap / waste iron / steel
- is a single-step process
uses / requires less / low(er) energy
Ignore references to temperature / heat or labour or technology.

M4.(a) $\quad(Q=m c \Delta T)$

$$
\begin{aligned}
& =50 \times 4.18 \times 27.3 \\
& \quad \text { If incorrect (eg mass }=0.22 \text { or } 50.22 \mathrm{~g}) \quad C E=0 / 2
\end{aligned}
$$

$=5706 \mathrm{~J}$ (accept 5700 and 5710)
Accept 5.7 kJ with correct unit. Ignore sign.
(b) $M_{\text {r }}$ of 2-methylpropan-2-ol $=74(.0)$

For incorrect M_{r}, lose M1 but mark on.

$$
\begin{aligned}
\text { Moles } & =\text { mass } / M_{r} \\
& =0.22 / 74(.0) \\
& =\mathbf{0 . 0 0 2 9 7} \text { moles }
\end{aligned}
$$

```
\(\Delta H=-5706 /(0.002970 \times 1000)\)
    \(=-1921\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)\)
        If 0.22 is used in part (a), answer \(=-8.45 \mathrm{~kJ} \mathrm{~mol}^{-1}\) scores 3
(Allow -1920, -1919)
    If uses the value given (5580 J), answer \(=-1879 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
    scores 3
    Answer without working scores M3 only.
    Do not penalise precision.
    Lack of negative sign loses M3
```

(c) $\Delta H=\Sigma \Delta H$ products $-\Sigma \Delta H$ reactants

OR a correct cycle
Correct answer with no working scores 1 mark only.

$$
\begin{gathered}
\Delta H=-(-360)+(4 \times-393)+(5 \times-286) \\
M 2 \text { also implies M1 scored. }
\end{gathered}
$$

$\Delta H=\mathbf{- 2 6 4 2}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ This answer only.
(d) (-2422 - part (b)) $\times 100 /-2422$

Ignore negative sign.
Expect answers in region of 20.7
If error carried forward, 0.22 allow 99.7
If 5580 J used earlier, then allow 22.4
(e) Reduce the distance between the flame and the beaker / put a sleeve around the flame to protect from drafts / add a lid / use a copper calorimeter rather than a pyrex beaker / use a food calorimeter

Any reference to insulating material around the beaker must be on top.
Accept calibrate the equipment using an alcohol of known enthalpy of combustion.
(f) Incomplete combustion

M5.(a) M1 (could be scored by a correct mathematical expression
Correct answer to the calculation gains all of M1, M2 and M3
M1 $\underline{\left.\Delta H=\Sigma \Delta H_{f} \text { (products) }-\Sigma \Delta H_{t} \text { (reactants) }\right) ~}$
Credit 1 mark for - $101\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
OR a correct cycle of balanced equations
M2 $=-1669-3(-590)$
$=-1669+1770$
(This also scores M1)
$\mathrm{M} 3=\boldsymbol{+} 101\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$

Award 1 mark ONLY for - 101

For other incorrect or incomplete answers, proceed as follows

- check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would
score 2 marks (M1 and M2)
- If no $A E$, check for a correct method; this requires either a correct cycle with $3 S r$ and $2 A I O R$ a clear statement of M1 which could be in words and scores only M1

M4 - Using powders
Any one from

- To increase collision frequency / collisions in a given time / rate of collisions
- To increase the surface contact / contact between the solids / contact between (exposed) particles

Ignore dividing final answer by 3
Penalise M4 for reference to molecules.

M5 Major reason for expense of extraction

Any one from

- Aluminium is extracted by electrolysis $\mathbf{O R}$ aluminium extraction uses (large amounts of) electricity
- Reaction / process / It / the mixture requires heat
- It is endothermic
(b) Calcium has a higher melting point than strontium, because Ignore general Group 2 statements.

Correct reference to size of cations / proximity of electrons
M1 (For Ca) delocalised electrons closer to cations / positive ions / atoms / nucleus
$\overline{O R}$ cations / positive ions / atoms are smaller
OR cation / positive ion / atom or it has fewer (electron) shells / levels
Penalise M1 if either of Ca or Sr is said to have more or less delocalised electrons OR the same nuclear charge.
Ignore reference to shielding.
Relative strength of metallic bonding
M2 (Ca) has stronger attraction between the cations / positive ions / atoms / nucleus and the delocalised electrons
OR
stronger metallic bonding
(assume argument refers to Ca but credit converse argument for Sr)
CE= \mathbf{O} for reference to molecules or Van der Waals forces or intermolecular forces or covalent bonds.
(c) $\quad \mathrm{M} 12 \mathrm{Mg}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MgO}$

M2 Mg $+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
Credit multiples of the equations.
M3 Magnesium hydroxide is used as an antacid / relieve indigestion (heartburn) / neutralise (stomach) acidity / laxative

Not simply "milk of magnesia" in M3

